일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- F-AnoGAN
- git log
- CycleGAN
- EC2
- AnoGAN
- pix2pix
- autoencoder
- DCGAN
- Image to image translation
- bash vs zsh
- AWS
- ubuntu pipe
- gan
- ubuntu 명령어
- aws rds
- linux
- ubuntu grep
- 쏴아리 딥러닝
- AWS Certificate
- anomaly detection
- bash 명령어
- 말해보시개 Linux
- unsupervised learning
- docker
- ubuntu mount
- ubuntu zsh
- AWS EC2
- git commit
- 말해보시개 딥러닝
- ubuntu
- Today
- Total
목록gan (4)
쏴아리의 딥러닝 스터디
Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks(2017) Abstract ▷ Paired Image-to-image translation 훈련 데이터 획득의 어려움 Image-to-image translation은 input-target 이미지 pairs를 활용하여, 입력 이미지를 출력 이미지로 맵핑하는 함수를 학습하는 것이 목적입니다. 하지만 paired training data를 얻는 활동이 불가능할 수 있습니다. ▷ Paired Input-target 이미지가 없어도 학습 가능한 "Unpaired Image to image tranlslation" 학습방법 제안 본 연구에서는 paired examples..
Image-to-Image Translation with Conditional Adversarial Network(2017) Abstract 1. conditional GAN을 활용한 image-to-image translation problem 해결 본 연구에서는 conditional adversarial network를 활용하여 image-to-image translation problem의 general-purpose solution이 적용가능한지 탐구 하였습니다. 이러한 뉴럴네트워크는 input image에서 output image로의 mapping을 학습할 뿐 아니라, mapping을 학습바기 위한 loss function도 함께 배웁니다. 이는 전통적인 방법과 매우 다른 loss formula..
f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks(2019) Abstract 1. 의료 이미지의 이상여부 Label을 얻는 작업은 time-consuming하고 비현실적입니다. 의료 이미지에 대한 전문가의 라벨을 얻는 것은 time-consuming 하고 매우 어려운 작업입니다. 또한 사전에 알려진 모든 가능한 라벨을 annotation 하는 작업은 불가능하고, 또한 guide annotation도 충분히 잘 묘사하기 힘든 경우가 있습니다. supervised learning 방법론은 전문가의 labeled training data가 있다면 좋은 결과를 낼 수 있지만, 라벨이 반드시 존재해야 하는 한계점이 ..
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery Abstract 질병의 발병을 모니터링 하기 위하여, 이상한 이미지를 마킹하는 작업은 도전적인 문제입니다. 일반적으로 모델은 많은 라벨 데이터를 필요로 하기 때문입니다. 하지만 라벨을 annotation하는 작업은 비용이 많이 든다는 한계점이 있습니다. 본 연구에서는 비지도 학습기반의 방법론 AnoGAN을 통해 이미지 데이터를 위한 이상탐지를 수행합니다. AnoGAN은 정상데이터의 다양성의 Manifold를 학습하기 위한 Deep Convolutional Generative Adversarial Network로서, 새로운 이상 데이터를 l..